Наука
25.09.06, Пн, 13:59, Мск
Версия для КПК
Эра гигантских монстров–ускорителей, пожирающих электроэнергию, близится к концу. Новые лазерные технологии позволяют создавать ультракомпактные, экономичные ускорители на гораздо большую энергию, чем было возможно до сих пор.
Читайте также:
- PASER: разработана новая технология ускорения частиц
- Создан первый не фотонный лазер
- Разработан принципиально новый "лазерный" ускоритель
- В Казахстане открылся научный комплекс на базе ускорителя тяжелых ионов
Метод кильватерного ускорения (laser wakefield acceleration) основан на облучении плазмы интенсивными лазерными импульсами, что позволяет создать поля сверхвысокой напряженности - так называемый «кильватерный» след. Сепарация плазмы на электроны и ионы под действием лазера создает электромагнитные поля, ускоряющие электроны до высоких энергий в тысячи раз быстрее и на несравнимо меньших дистанциях, чем возможно сегодня.
Идея нового метода ускорения
не нова – она была предложена еще в 1979 году учеными из Калифорнийского университета Тоши Тоджимой и Дж. М. Доусоном. Метод получил названия кильватерного ускорения частиц в плазме и на протяжении многих лет исследовался физиками-ускорительщиками. Работы по этой тематике велись и в нашей стране, в частности, в Институте ядерной физики им. Г. И. Будкера.
Реализация нового метода стала возможной с появлением настольных тераваттных лазеров.
На практике новый метод ускорения был продемонстрирован впервые в 2004 году учеными из европейских и американских лабораторий. В национальной лаборатории Беркли группе LOASIS (Laser Optics and Accelerator Systems Integrated Studies) под руководством Вима Лиманса (Wim Leemans) удалось получить хорошо сфокусированный пучок электронов с энергией свыше 80 МэВ. Их коллеги из Империал-колледжа в Лондоне ускорили электроны с помощью того же метода до 100 МэВ, а парижские ученые получили электронные пучки с энергией до 170 МэВ на дистанции 3 мм.
Дальнейшее усовершенствование метода позволило группе ученых из национальной лаборатории Беркли и их коллегам из Оксфордского университета ускорить пучок электронов до энергии свыше 1 ГэВ на дистанции 3,3 см, сообщает PhysOrg.
Для сравнения, в Стэнфордском линейном ускорителе SLAC (Stanford Linear Accelerator Center) электроны ускоряются до 50 ГэВ на 3,2 км с помощью высокочастотных резонаторов. Кильватерное ускорение с помощью плазмы позволило в 50 раз увеличить энергию пучка электронов по сравнению с линейным ускорителем SLAC и в сто тыс. раз уменьшить ускоряющий промежуток.
Столь впечатляющего результата удалось добиться с помощью применения конденсаторной капиллярной разрядной системы, разработанной группой Саймона Хукера из Оксфордского университета.